Main Article Content

Abstract

The optimization approach using the simplex lattice design (SCD) has many advantages, including a minimized number of experiments and a good description of the interactions between components. However, modeling with the SCD approach has not evaluated between responses. Therefore, this study aims to apply chemometric analysis to evaluate the response from the optimization stage using the quercetin – self emulsion formulations (quercetin-SEFs) as a model. SEFs were prepared using grapeseed oil, croduret, and PEG 400. The evaluated responses included emulsification time and transmittance. Both responses were developed in endurance test by centrifugation method and stability test using freeze-thaw. Chemometric analysis on CA produced a dendrogram, while PCA produced score plots, loading plots, scree plots, and biplots. Emulsification time has a positive correlation with transmittance value. The quercetin-SEFs formula in SCD was classified into three groups based on the similarity of characters. Chemometric analysis was successfully applied in evaluating the response to the quercetin-SEFs optimization modeling.

Keywords

Emulsion Chemometrics Quersetin Self-emulsion Simplex centroid design

Article Details

References

  1. Alizadeh, S. R., & Ebrahimzadeh, M. A. (2022). Quercetin derivatives: Drug design, development, and biological activities, a review. European Journal of Medicinal Chemistry, 229, 114068. https://doi.org/10.1016/J.EJMECH.2021.114068
  2. Anwer, M. K., Iqbal, M., Aldawsari, M. F., Alalaiwe, A., Ahmed, M. M., Muharram, M. M., Ezzeldin, E., Mahmoud, M. A., Imam, F., & Ali, R. (2021). Improved antimicrobial activity and oral bioavailability of delafloxacin by self-nanoemulsifying drug delivery system (SNEDDS). Journal of Drug Delivery Science and Technology, 64, 102572. https://doi.org/https://doi.org/10.1016/j.jddst.2021.102572
  3. Artanti, A. N., Febriyanty, A., Prihapsara, F., & Ermawati, D. E. (2021). Formulation optimization and antioxidant test for Self-nano emulsifying drug delivery system of soursop leaves (Annona muricata L.) chloroform extract using candlenut oil as oil phase. Pharmaciana, 11(1), 143–152. https://doi.org/10.12928/PHARMACIANA.V11I1.17805
  4. Cardona, M. I., Dominguez, G. P., Echeverry, S. M., Valderrama, I. H., Bernkop-Schnürch, A., & Aragón, M. (2021). Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalis peruviana. Journal of Drug Delivery Science and Technology, 66, 102797. https://doi.org/https://doi.org/10.1016/j.jddst.2021.102797
  5. Cholakova, D., Vinarov, Z., Tcholakova, S., & Denkov, N. (2022). Self-emulsification in chemical and pharmaceutical technologies. Current Opinion in Colloid & Interface Science, 101576. https://doi.org/10.1016/J.COCIS.2022.101576
  6. Dhanya, R. (2022). Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine & Pharmacotherapy, 146, 112560. https://doi.org/10.1016/J.BIOPHA.2021.112560
  7. Dhritlahre, R. K., Ruchika, Padwad, Y., & Saneja, A. (2021). Self-emulsifying formulations to augment therapeutic efficacy of nutraceuticals: From concepts to clinic. Trends in Food Science & Technology, 115, 347–365. https://doi.org/https://doi.org/10.1016/j.tifs.2021.06.046
  8. Halder, S., Islam, A., Muhit, M. A., Shill, M. C., & Haider, S. S. (2021). Self-emulsifying drug delivery system of black seed oil with improved hypotriglyceridemic effect and enhanced hepatoprotective function. Journal of Functional Foods, 78, 104391. https://doi.org/10.1016/j.jff.2021.104391
  9. Herbianto, A. S. (2018). Pengaruh perbedaan konsentrasi surfaktan terhadap karakter fisik dan pH nanoemulsi pencerah kulit. Calyptra, 7(1), 736–746. https://journal.ubaya.ac.id/index.php/jimus/article/view/1193
  10. Hssaini, L., Razouk, R., Charafi, J., Houmanat, K., & Hanine, H. (2021). Fig seeds: Combined approach of lipochemical assessment using gas chromatography and FTIR-ATR spectroscopy using chemometrics. Vibrational Spectroscopy, 114, 103251. https://doi.org/https://doi.org/10.1016/j.vibspec.2021.103251
  11. Jumaryatno, P., Chabib, L., Hayati, F., & Awaluddin, R. (2018). Stability study of Ipomoea reptans extract self-nanoemulsifying drug delivery system (SNEDDS) as anti-diabetic therapy. Journal of Applied Pharmaceutical Science, 8(9), 11–14. https://doi.org/10.7324/JAPS.2018.8903
  12. Kandemir, K., Tomas, M., McClements, D. J., & Capanoglu, E. (2022). Recent advances on the improvement of quercetin bioavailability. Trends in Food Science & Technology, 119, 192–200. https://doi.org/10.1016/J.TIFS.2021.11.032
  13. Kant, V., Jangir, B. L., Sharma, M., Kumar, V., & Joshi, V. G. (2021). Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacology and Immunotoxicology, 43(5), 536–553. https://doi.org/10.1080/08923973.2021.1950758
  14. Kant, V., Sharma, M., Jangir, B. L., & Kumar, V. (2022). Acceleration of wound healing by quercetin in diabetic rats requires mitigation of oxidative stress and stimulation of the proliferative phase. Https://Doi.Org/10.1080/10520295.2022.2032829, 1–12. https://doi.org/10.1080/10520295.2022.2032829
  15. Li, F., Liu, J., Tang, S., Yan, J., Chen, H., Li, D., & Yan, X. (2021). Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expression. Acta Histochemica, 123(8), 151819. https://doi.org/10.1016/J.ACTHIS.2021.151819
  16. Maciel, L. G., Teixeira, G. L., & Block, J. M. (2020). Dataset on the phytochemicals, antioxidants, and minerals contents of pecan nut cake extracts obtained by ultrasound-assisted extraction coupled to a simplex-centroid design. Data in Brief, 28, 105095. https://doi.org/10.1016/J.DIB.2019.105095
  17. Manjunath, S. H., & Thimmulappa, R. K. (2021). Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19. Journal of Pharmaceutical Analysis. https://doi.org/10.1016/J.JPHA.2021.09.009
  18. Moon, H., Lertpatipanpong, P., Hong, Y., Kim, C. T., & Baek, S. J. (2021). Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. Journal of Functional Foods, 87, 104756. https://doi.org/10.1016/J.JFF.2021.104756
  19. Nunes Filho, R. C., Galvan, D., Effting, L., Terhaag, M. M., Yamashita, F., Benassi, M. de T., & Spinosa, W. A. (2021). Effects of adding spices with antioxidants compounds in red ale style craft beer: A simplex-centroid mixture design approach. Food Chemistry, 365, 130478. https://doi.org/10.1016/J.FOODCHEM.2021.130478
  20. Pratiwi, G., Susanti, S., & Shiyan, S. (2020). Application of Factorial Design for Optimization of PVC-HPMC Polymers in Matrix Film Ibuprofen Patch-Transdermal Drug Delivery System. Indonesian Journal of Chemometrics and Pharmaceutical Analysis, 1(1), 11–22. https://doi.org/10.22146/ijcpa.486
  21. Racinowski, M., Mazur, E., Lewandowski, B. T., Gołębiewski, J., Kałużny, K., & Leis, K. (2021). Quercetin as a supplement improving endurance exercise capacity – review. Science & Sports. https://doi.org/https://doi.org/10.1016/j.scispo.2021.03.014
  22. Riswanto, F. D. O., Riyanto, S., Martono, S., & Rohman, A. (2021). Pemanfaatan Paket Perangkat Lunak R factoextra dan FactoMineR serta Aplikasi Analisis Komponen Utama dalam Autentikasi Beragam Jenis Minyak. In J.Chemom.Pharm.Anal (Vol. 2021, Issue 1). www.journal.ugm.ac.id/v3/IJCPA
  23. Septembre-Malaterre, A., Boumendjel, A., Seteyen, A.-L. S., Boina, C., Gasque, P., Guiraud, P., & Sélambarom, J. (2022). Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus, 2(1), 100220. https://doi.org/10.1016/J.PHYPLU.2022.100220
  24. Shiyan, S., Marketama, M. M. A., & Pratiwi, G. (2021). Optimization transdermal patch of polymer combination of chitosan and HPMC-loaded ibuprofen using factorial designs. Pharmaciana, 11(3), 406. https://doi.org/10.12928/pharmaciana.v11i3.19935
  25. Shiyan, S., Suryani, R. P., Mulyani, L. N., & Pratiwi, G. (2022). Stability study of super saturable catechin-self nano emulsifying drug delivery system as antidiabetic therapy. Biointerface Research in Applied Chemistry, 12(5), 5811–5820. https://doi.org/10.33263/BRIAC125.58115820
  26. Shiyan, S., Zubaidah, & Pratiwi, G. (2021). Chemometric approach to assess response correlation and its classification in simplex centroid design for pre-optimization stage of catechin-SNEDDS. Research Journal of Pharmacy and Technology, 14(11), 5863–5870. https://doi.org/10.52711/0974-360X.2021.01020
  27. Singh, P., Arif, Y., Bajguz, A., & Hayat, S. (2021). The role of quercetin in plants. Plant Physiology and Biochemistry, 166, 10–19. https://doi.org/10.1016/J.PLAPHY.2021.05.023
  28. Tharmatt, A., Thakur, S., Singh, A., Kaur, M., Shahtaghi, N. R., Malhotra, D., & Jain, S. K. (2021). Olive oil and oleic acid-based self nano-emulsifying formulation of omega-3-fatty acids with improved strength, stability, and therapeutics. Https://Doi.Org/10.1080/02652048.2021.1914760, 38(5), 298–313.
  29. https://doi.org/10.1080/02652048.2021.1914760
  30. Triyasmono, L., Munisa, I., Anwar, K., Wianto, T., Santoso, H. B., & Rohman, A. (2021). Identification and authentication of Eurycoma longifolia root extract from Zingiber officinale rhizome using FTIR spectroscopy and chemometrics. In J.Chemom.Pharm.Anal (Vol. 2021, Issue 2). www.journal.ugm.ac.id/v3/IJCPA
  31. Widyastuti, I., Luthfah, H. Z., Hartono, Y. I., Islamadina, R., Can, A. T., & Rohman, A. (2021). Aktivitas Antioksidan Temulawak (Curcuma xanthorrhiza Roxb.) dan Profil Pengelompokannya dengan Kemometrik Antioxidant Activity of Temulawak (Curcuma xanthorrhiza Roxb.) and its Classification with Chemometrics. www.journal.ugm.ac.id/v3/IJCPA
  32. Yang, X., Wei, X., Yu, K., Wan, C., Wang, Y., Huang, S., Sun, Q., & Huang, J. (2022). Identification of myocardial fibrosis by ATR-FTIR spectroscopy combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, 120238. https://doi.org/https://doi.org/10.1016/j.saa.2021.120238
  33. Yuliani, S. H., Hartini, M., Pudyastuti, B., & Istyastono, E. P. (2016). Comparison of physical stability properties of pomegranate seed oil nanoemulsion dosage forms with long-chain triglyceride and medium-chain triglyceride as the oil phase. Traditional Medicine Journal, 21(2), 93–98.
  34. Zhao, B., Zhang, Q., Liang, X., Xie, J., & Sun, Q. (2021). Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway. European Journal of Pharmacology, 912, 174607. https://doi.org/10.1016/J.EJPHAR.2021.174607.