Main Article Content
Abstract
The global shift toward sustainable transportation has positioned fuel cell electric vehicles (FCEVs) as a key zero-emission mobility solution. Despite notable technological progress, FCEV adoption faces persistent barriers including high hydrogen production costs, limited infrastructure, and lack of real-world validation. This study employs the Pattern, Advance, Gap, Evidence for Practice, and Research Recommendation (PAGER) framework to conduct a comprehensive bibliometric analysis of 200 peer-reviewed publications from 2005 to 2024, focusing on performance trends, technological advancements, research gaps, practical applications, and future research directions. The analysis uses Scopus data and VOSviewer for visualization and thematic mapping to identify three distinct research phases: early exploration, gradual refinement, and rapid technological maturity. Key findings highlight advancements in energy management strategies, hybrid powertrain integration, and hydrogen storage optimization. However, critical gaps remain in economic modeling, behavioral adoption analysis, and infrastructure scalability. This study offers a structured roadmap for future research and practice, emphasizing the need for dynamic total cost of ownership models, interdisciplinary policy interventions, and real-world pilot projects. The findings serve as a strategic reference for academics, industry stakeholders, and policymakers to accelerate the global transition to sustainable FCEV-based transportation systems.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Z. Zhong, W. Hu, and X. Zhao, “Rethinking electric vehicle smart charging and greenhouse gas emissions: Renewable energy growth, fuel switching, and efficiency improvement,” Appl Energy, vol. 361, May 2024, doi: 10.1016/j.apenergy.2024.122904.
- B. Shui, M. Shafique, and X. Luo, “Light-duty passenger vehicle electrification in China from 2021 to 2050 and associated greenhouse gas emissions: A dynamic fleet perspective,” Transp Res D Transp Environ, vol. 130, May 2024, doi: 10.1016/j.trd.2024.104199.
- T. Kemperdick and P. Letmathe, “External costs of battery-electric and fuel cell electric vehicles for heavy-duty applications,” Transp Res D Transp Environ, vol. 131, Jun. 2024, doi: 10.1016/j.trd.2024.104198.
- D. da Fonseca-Soares, S. A. Eliziário, J. D. Galvincio, and A. F. Ramos-Ridao, “Greenhouse Gas Emissions in Railways: Systematic Review of Research Progress,” Buildings, vol. 14, no. 2, Feb. 2024, doi: 10.3390/buildings14020539.
- Y. D. Herlambang et al., “Study on Solar Powered Electric Vehicle with Thermal Management Systems on the Electrical Device Performance,” Automotive Experiences, vol. 7, no. 1, pp. 18–27, Jan. 2024, doi: 10.31603/ae.10506.
- Y. D. Herlambang et al., “Application of a PEM Fuel Cell Engine as a Small-Scale Power Generator for Small Cars with Different Fuel Concentrations,” Automotive Experiences, vol. 6, no. 2, pp. 273–289, May 2023, doi: 10.31603/ae.9225.
- H. Togun et al., “A review on recent advances on improving fuel economy and performance of a fuel cell hybrid electric vehicle,” Nov. 04, 2024, Elsevier Ltd. doi: 10.1016/j.ijhydene.2024.09.298.
- H. Sahin, M. S. Çetin, M. T. Gençoğlu, and O. Erdinç, “Fuel cell and battery powered light electric vehicle simulation,” Int J Hydrogen Energy, 2025, doi: 10.1016/j.ijhydene.2024.12.499.
- M. Waseem, M. Amir, G. S. Lakshmi, S. Harivardhagini, and M. Ahmad, “Fuel cell-based hybrid electric vehicles: An integrated review of current status, key challenges, recommended policies, and future prospects,” Dec. 01, 2023, Elsevier B.V. doi: 10.1016/j.geits.2023.100121.
- A. F. Burke, J. Zhao, and L. M. Fulton, “Projections of the costs of light-duty battery-electric and fuel cell vehicles (2020–2040) and related economic issues,” Research in Transportation Economics, vol. 105, Jul. 2024, doi: 10.1016/j.retrec.2024.101440.
- M. Singh, M. K. Singla, M. Safaraliev, K. Singh, I. Odinaev, and A. Abdel Menaem, “Advancements and challenges of fuel cell integration in electric vehicles: A comprehensive analysis,” Int J Hydrogen Energy, vol. 88, pp. 1386–1397, Oct. 2024, doi: 10.1016/j.ijhydene.2024.09.212.
- T. Ye, S. Zhao, C. K. M. Lau, and F. Chau, “Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms,” Energy Econ, vol. 133, May 2024, doi: 10.1016/j.eneco.2024.107564.
- D. Boix-Cots, A. Ishizaka, A. de la Fuente, and P. Pujadas, “Beyond the combustion motor: A MCDM-based approach to analyse the alternative fuel vehicle decision from the customers’ point of view,” J Clean Prod, vol. 486, Jan. 2025, doi: 10.1016/j.jclepro.2024.144564.
- Z. Liu, L. Cheng, K. Yuan, and D. Yang, “Discharging thermal management of a type IV storage tank of hydrogen fuel cell electric vehicles with a novel solution procedure,” Appl Therm Eng, vol. 264, Apr. 2025, doi: 10.1016/j.applthermaleng.2025.125494.
- M. Shojayian, M. Mazrouei Sebdani, and E. Kjeang, “Simulation of fuel cell membrane durability under vehicle operation,” J Power Sources, vol. 613, Sep. 2024, doi: 10.1016/j.jpowsour.2024.234855.
- M. H. Madadi and I. Chitsaz, “Improving fuel efficiency and durability in fuel cell vehicles through component sizing and power distribution management,” Int J Hydrogen Energy, vol. 71, pp. 661–673, Jun. 2024, doi: 10.1016/j.ijhydene.2024.05.276.
- M. E. Vilberger, N. S. Popov, E. A. Domakhin, V. I. Anibroev, and M. E. Mosin, “Increasing the energy efficiency of an electric vehicle powered by hydrogen fuel cells,” Int J Hydrogen Energy, vol. 85, pp. 406–415, Oct. 2024, doi: 10.1016/j.ijhydene.2024.08.099.
- J. Wu, J. Peng, M. Li, and Y. Wu, “Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach,” Energy Convers Manag, vol. 310, Jun. 2024, doi: 10.1016/j.enconman.2024.118499.
- M. Younas, S. Shafique, A. Hafeez, F. Javed, and F. Rehman, “An Overview of Hydrogen Production: Current Status, Potential, and Challenges,” May 15, 2022, Elsevier Ltd. doi: 10.1016/j.fuel.2022.123317.
- N. Apriandi et al., “Solar Drying Technology: Current Research Trends and Future Perspectives,” J., Appl Sci., Eng., Tech, vol. 04, no. 03, pp. 254–266, 2024, doi: 10.25077/aijaset.v4i3.193.
- N. Apriandi et al., “A PAGER framework-enhanced bibliometric analysis of global nuclear desalination research trends (2005–2024),” Desalination, vol. 601, p. 118564, Apr. 2025, doi: 10.1016/j.desal.2025.118564.
- M. S. Raboaca, N. Bizon, and O. V. Grosu, “Optimal energy management strategies for the electric vehicles compiling bibliometric maps,” Int J Energy Res, vol. 45, no. 7, pp. 10129–10172, Jun. 2021, doi: 10.1002/er.6503.
- B. V. Ayodele and S. I. Mustapa, “Life cycle cost assessment of electric vehicles: A review and bibliometric analysis,” Mar. 01, 2020, MDPI. doi: 10.3390/su12062387.
- I. Alvarez-Meaza, E. Zarrabeitia-Bilbao, R. M. Rio-Belver, and G. Garechana-Anacabe, “Fuel-cell electric vehicles: Plotting a scientific and technological knowledge map,” Sustainability (Switzerland), vol. 12, no. 6, Mar. 2020, doi: 10.3390/su12062334.
- E. B. Agyekum, F. Odoi-Yorke, A. A. Abbey, and G. K. Ayetor, “A review of the trends, evolution, and future research prospects of hydrogen fuel cells – A focus on vehicles,” Jun. 27, 2024, Elsevier Ltd. doi: 10.1016/j.ijhydene.2024.05.480.
- K. Pinto, H. O. Bansal, and P. Goyal, “A comprehensive assessment of the techno-socio-economic research growth in electric vehicles using bibliometric analysis,” Jan. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s11356-021-17148-4.
- M. Setiyo, I. C. Setiawan, M. Heerwan, and B. Peeie, “Research Trends of Electric Vehicles (EVs) in Indonesia, Malaysia, and Thailand: A Quick Analysis using Bibliometric,” Automotive Experiences 1 Automotive Experiences, vol. 8, no. 1, pp. 1–8, 2025, doi: 10.31603/ae.13020.
- A. D. Shieddieque, I. Rahayu, S. Hidayat, and J. A. Laksmono, “Recent Development in LiFePO4 Surface Modifications with Carbon Coating from Originated Metal-Organic Frameworks (MOFs) to Improve the Conductivity of Cathode for Lithium-Ion Batteries: A Review and Bibliometric Analysis,” Nov. 24, 2023, Universitas Muhammadiyah Magelang. doi: 10.31603/ae.9524.
- A. Susilawati, A. S. M. Al Obaidi, A. Abduh, F. S. Irwansyah, and A. B. D. Nandiyanto, “How to do research methodology: From Literature Review, Bibliometric, Step-by-step Research Stages, to Practical Examples in Science and Engineering Education,” Indonesian Journal of Science and Technology, vol. 10, no. 1, pp. 1–40, Apr. 2025, doi: 10.17509/ijost.v10i1.78637.
- A. B. D. Nandiyanto, R. Ragadhita, M. Fiandini, D. N. Al Husaeni, and M. Aziz, “Exploring Iron Oxide’s Role in Hydrogen Production: Bibliographic and Bibliometric Analysis,” Moroccan Journal of Chemistry, vol. 11, no. 4, pp. 897–916, 2023, doi: 10.48317/IMIST.PRSM/morjchem-v11i04.41591.
- C. Bradbury-Jones, H. A. Oliver, R. Herber, L. Isham, J. Taylor, and L. O’malley, “Title: Scoping reviews: the PAGER framework for improving the quality of reporting.” [Online]. Available: https://www.campbellcollaboration.org/
- A. Parsay et al., “Enhancing photovoltaic efficiency: An in-depth systematic review and critical analysis of dust monitoring, mitigation, and cleaning techniques,” Appl Energy, vol. 388, p. 125668, Jun. 2025, doi: 10.1016/j.apenergy.2025.125668.
- N. Amir, F. Hussin, M. K. Aroua, and M. Gozan, “Exploring seaweed as a sustainable solution for carbon dioxide adsorption: Trends, opportunities, and future research prospects,” May 01, 2025, Elsevier Ltd. doi: 10.1016/j.rser.2025.115458.
- S. B. Wali et al., “Usage count of hydrogen-based hybrid energy storage systems: An analytical review, challenges and future research potentials,” Nov. 01, 2023, Elsevier Ltd. doi: 10.1016/j.ijhydene.2023.05.298.
- C. Park, K. Kook, K. Oh, D. Kim, and H. Kim, “Operation algorithms for a fuel cell hybrid electric vehicle,” International Journal of Automotive Technology, vol. 6, no. 4, pp. 429–436, 2005.
- J. Marco and N. D. Vaughan, “The control-oriented design and simulation of a high voltage bus management strategy for use within hybrid electric vehicles,” Int. J. Vehicle Systems Modelling and Testing, vol. 2, no. 4, pp. 345–368, 2007.
- F. Ommi, G. Pourabedin, and K. Nekofa, “Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles,” in Proceedings of World Academy of Science, Engineering and Technology, 2009, pp. 586–592.
- C. Zhao, Z. Wu, Y. Qi, F. Hou, and J. Wu, “R&D of the Advanced Electric Vehicle at CATARC,” 2007.
- M. Kandidayeni, A. O. Macias Fernandez, A. Khalatbarisoltani, L. Boulon, S. Kelouwani, and H. Chaoui, “An Online Energy Management Strategy for a Fuel Cell/Battery Vehicle Considering the Driving Pattern and Performance Drift Impacts,” IEEE Trans Veh Technol, vol. 68, no. 12, pp. 11427–11438, Dec. 2019, doi: 10.1109/TVT.2019.2936713.
- D. Zhou, A. Al-Durra, F. Gao, A. Ravey, I. Matraji, and M. Godoy Simões, “Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach,” J Power Sources, vol. 366, pp. 278–291, 2017, doi: 10.1016/j.jpowsour.2017.08.107.
- O. Hegazy, J. Van Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans Power Electron, vol. 27, no. 11, pp. 4445–4458, 2012, doi: 10.1109/TPEL.2012.2183148.
- C. Bauer, J. Hofer, H. J. Althaus, A. Del Duce, and A. Simons, “The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework,” Appl Energy, vol. 157, pp. 871–883, 2015, doi: 10.1016/j.apenergy.2015.01.019.
- E. Schaltz, A. Khaligh, and P. O. Rasmussen, “Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle,” IEEE Trans Veh Technol, vol. 58, no. 8, pp. 3882–3891, 2009, doi: 10.1109/TVT.2009.2027909.
- K. Ettihir, L. Boulon, and K. Agbossou, “Optimization-based energy management strategy for a fuel cell/battery hybrid power system,” Appl Energy, vol. 163, pp. 142–153, Feb. 2016, doi: 10.1016/j.apenergy.2015.10.176.
- C. B. Robledo, V. Oldenbroek, F. Abbruzzese, and A. J. M. van Wijk, “Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building,” Appl Energy, vol. 215, pp. 615–629, Apr. 2018, doi: 10.1016/j.apenergy.2018.02.038.
- S. Farhani, A. N’Diaye, A. Djerdir, and F. Bacha, “Design and practical study of three phase interleaved boost converter for fuel cell electric vehicle,” J Power Sources, vol. 479, Dec. 2020, doi: 10.1016/j.jpowsour.2020.228815.
- Y. R. Kang, J. C. Son, and D. K. Lim, “Optimal Design of IPMSM for Fuel Cell Electric Vehicles Using Autotuning Elliptical Niching Genetic Algorithm,” IEEE Access, vol. 8, pp. 117405–117412, 2020, doi: 10.1109/ACCESS.2020.3004722.
- D. Ho Nguyen, J. Hoon Kim, T. To Nguyen Vo, N. Kim, and H. Seon Ahn, “Design of portable hydrogen tank using adsorption material as storage media: An alternative to Type IV compressed tank,” Appl Energy, vol. 310, Mar. 2022, doi: 10.1016/j.apenergy.2022.118552.
- S. Kim, H. Jeong, and H. Lee, “Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems,” Energy, vol. 232, Oct. 2021, doi: 10.1016/j.energy.2021.121001.
- R. Á. Fernández and O. Pérez-Dávila, “Fuel cell hybrid vehicles and their role in the decarbonisation of road transport,” J Clean Prod, vol. 342, Mar. 2022, doi: 10.1016/j.jclepro.2022.130902.
- J. Li, H. Wang, H. He, Z. Wei, Q. Yang, and P. Igic, “Battery Optimal Sizing under a Synergistic Framework with DQN-Based Power Managements for the Fuel Cell Hybrid Powertrain,” IEEE Transactions on Transportation Electrification, vol. 8, no. 1, pp. 36–47, Mar. 2022, doi: 10.1109/TTE.2021.3074792.
- T. Bacquart et al., “Assessing the Performance of Fuel Cell Electric Vehicles Using Synthetic Hydrogen Fuel,” Energies (Basel), vol. 17, no. 7, Apr. 2024, doi: 10.3390/en17071510.
- T. Guo, L. Sun, G. Wang, and S. Wu, “Analysis of the Driving Range Evaluation Method for Fuel-Cell Electric Vehicles,” World Electric Vehicle Journal, vol. 15, no. 6, Jun. 2024, doi: 10.3390/wevj15060223.
- M. Li, X. Zhang, and G. Li, “A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis,” Energy, vol. 94, pp. 693–704, Jan. 2016, doi: 10.1016/j.energy.2015.11.023.
- H. S. Lee, C. W. Cho, J. H. Seo, and M. Y. Lee, “Cooling performance characteristics of the stack thermal management system for fuel cell electric vehicles under actual driving conditions,” Energies (Basel), vol. 9, no. 5, 2016, doi: 10.3390/en9050320.
- F. Alavi, E. Park Lee, N. van de Wouw, B. De Schutter, and Z. Lukszo, “Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks,” Appl Energy, vol. 192, pp. 296–304, 2017, doi: 10.1016/j.apenergy.2016.10.084.
- P. Zhang, Y. Wang, H. Du, and C. Du, “Health-Conscious Energy Management for Fuel Cell Hybrid Electric Vehicles Based on Adaptive Equivalent Consumption Minimization Strategy,” Applied Sciences (Switzerland), vol. 14, no. 17, Sep. 2024, doi: 10.3390/app14177951.
- J. Uralde, O. Barambones, A. del Rio, I. Calvo, and E. Artetxe, “Rule-Based Operation Mode Control Strategy for the Energy Management of a Fuel Cell Electric Vehicle,” Batteries, vol. 10, no. 6, Jun. 2024, doi: 10.3390/batteries10060214.
- Q. Shuai, Y. Wang, Z. Jiang, and Q. Hua, “Reinforcement Learning-Based Energy Management for Fuel Cell Electrical Vehicles Considering Fuel Cell Degradation,” Energies (Basel), vol. 17, no. 7, Apr. 2024, doi: 10.3390/en17071586.
- R. Song, X. Liu, Z. Wei, F. Pan, Y. Wang, and H. He, “Safety and Longevity-Enhanced Energy Management of Fuel Cell Hybrid Electric Vehicle With Machine Learning Approach,” IEEE Transactions on Transportation Electrification, vol. 10, no. 2, pp. 2562–2571, Jun. 2024, doi: 10.1109/TTE.2023.3295433.
- J. Wu, Z. Huang, and C. Lv, “Transformer-Based Traffic-Aware Predictive Energy Management of a Fuel Cell Electric Vehicle,” IEEE Trans Veh Technol, vol. 73, no. 4, pp. 4659–4670, Apr. 2024, doi: 10.1109/TVT.2024.3355895.
- M. Pan et al., “An energy management strategy for fuel cell hybrid electric vehicle based on HHO-BiLSTM-TCN-self attention speed prediction,” Energy, vol. 307, Oct. 2024, doi: 10.1016/j.energy.2024.132734.
- W. Luo, G. Zhang, K. Zou, and C. Lin, “MLD Modeling and MPC-Based Energy Management Strategy for Hydrogen Fuel Cell/Supercapacitor Hybrid Electric Vehicles,” World Electric Vehicle Journal, vol. 15, no. 4, Apr. 2024, doi: 10.3390/wevj15040151.
- C. Ji, E. Kamal, and R. Ghorbani, “Reliable Energy Optimization Strategy for Fuel Cell Hybrid Electric Vehicles Considering Fuel Cell and Battery Health,” Energies (Basel), vol. 17, no. 18, Sep. 2024, doi: 10.3390/en17184686.
- F. Tao, B. Chen, Z. Fu, J. Liu, M. Li, and H. Sun, “Optimization of energy management strategy for fuel cell/battery/ultracapacitor hybrid electric vehicle using distributed interior point,” Electric Power Systems Research, vol. 230, May 2024, doi: 10.1016/j.epsr.2024.110287.
- X. Ren, J. Ye, L. Xie, and X. Lin, “Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle,” Energy, vol. 286, Jan. 2024, doi: 10.1016/j.energy.2023.129344.
- T. H. B. Huy, N. T. M. Duy, P. Van Phu, T. D. Le, S. Park, and D. Kim, “Robust real-time energy management for a hydrogen refueling station using generative adversarial imitation learning,” Appl Energy, vol. 373, Nov. 2024, doi: 10.1016/j.apenergy.2024.123847.
- Y. Zhao, S. Huang, X. Wang, J. Shi, and S. Yao, “Energy management with adaptive moving average filter and deep deterministic policy gradient reinforcement learning for fuel cell hybrid electric vehicles,” Energy, vol. 312, Dec. 2024, doi: 10.1016/j.energy.2024.133395.
- A. Benitez et al., “Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank,” J Clean Prod, vol. 278, Jan. 2021, doi: 10.1016/j.jclepro.2020.123277.
- L. Usai, C. R. Hung, F. Vásquez, M. Windsheimer, O. S. Burheim, and A. H. Strømman, “Life cycle assessment of fuel cell systems for light duty vehicles, current state-of-the-art and future impacts,” J Clean Prod, vol. 280, Jan. 2021, doi: 10.1016/j.jclepro.2020.125086.
- Z. Navas-Anguita, D. García-Gusano, J. Dufour, and D. Iribarren, “Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport,” Appl Energy, vol. 259, Feb. 2020, doi: 10.1016/j.apenergy.2019.114121.
- Y. Chen and M. Melaina, “Model-based techno-economic evaluation of fuel cell vehicles considering technology uncertainties,” Transp Res D Transp Environ, vol. 74, pp. 234–244, Sep. 2019, doi: 10.1016/j.trd.2019.08.002.
- H. Li, H. Chaoui, and H. Gualous, “Cost Minimization Strategy for Fuel Cell Hybrid Electric Vehicles Considering Power Sources Degradation,” IEEE Trans Veh Technol, vol. 69, no. 11, pp. 12832–12842, Nov. 2020, doi: 10.1109/TVT.2020.3031000.
- M. Moghadari, M. Kandidayeni, L. Boulon, and H. Chaoui, “Operating Cost Comparison of a Single-Stack and a Multi-Stack Hybrid Fuel Cell Vehicle Through an Online Hierarchical Strategy,” IEEE Trans Veh Technol, vol. 72, no. 1, pp. 267–279, Jan. 2023, doi: 10.1109/TVT.2022.3205879.
- Z. Wang et al., “A total cost of ownership analysis of zero emission powertrain solutions for the heavy goods vehicle sector,” J Clean Prod, vol. 434, Jan. 2024, doi: 10.1016/j.jclepro.2023.139910.
- F. Teng, Q. Zhang, S. Chen, G. Wang, Z. Huang, and L. Wang, “Comprehensive effects of policy mixes on the diffusion of heavy-duty hydrogen fuel cell electric trucks in China considering technology learning,” Energy Policy, vol. 185, Feb. 2024, doi: 10.1016/j.enpol.2023.113961.
- J. Zhao, A. F. Burke, M. R. Miller, and L. M. Fulton, “Integrating market penetration and cost technologies (IMPACT): Procurement incentives on fuel cell electric truck adoption in California,” Int J Hydrogen Energy, vol. 94, pp. 1266–1287, Dec. 2024, doi: 10.1016/j.ijhydene.2024.11.225.
- T. Yin, S. Chen, G. Wang, Y. Tan, F. Teng, and Q. Zhang, “Can subsidy policies achieve fuel cell logistics vehicle (FCLV) promotion targets? Evidence from the beijing-tianjin-hebei fuel cell vehicle demonstration city cluster in China,” Energy, vol. 311, Dec. 2024, doi: 10.1016/j.energy.2024.133270.
- K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur, “Final Results from U.S. FCEV Learning Demonstration,” World Electric Vehicle Journal, vol. 5, p. 0227, 2012.
- Z. Sun, Z. Wen, X. Zhao, Y. Yang, and S. Li, “Real-world driving cycles adaptability of electric vehicles,” World Electric Vehicle Journal, vol. 11, no. 1, Mar. 2020, doi: 10.3390/WEVJ11010019.
- T. Tiedemann, M. Kroener, M. Vehse, and C. Agert, “Fuel Cell Electrical Vehicles as Mobile Coupled Heat and Power Backup-Plant in Neighbourhoods,” Energies (Basel), vol. 15, no. 7, Apr. 2022, doi: 10.3390/en15072704.
- A. Legala, M. Kubesh, V. R. Chundru, G. Conway, and X. Li, “Machine learning modeling for fuel cell-battery hybrid power system dynamics in a Toyota Mirai 2 vehicle under various drive cycles,” Energy and AI, vol. 17, Sep. 2024, doi: 10.1016/j.egyai.2024.100415.