Main Article Content

Abstract

Rubber Seed Biodiesel (RSB) and Plastic Pyrolysis Oil (PPO) deserve to be considered as alternative fuels for diesel engines, because of their advantages such as large raw material resources, derived from free or waste feedstock and the use of plastic waste as fuel can prevent environmental pollution. Due to their almost identical densities, RSB and PPO can be mixed homogeneously. In general, the use of a mixture of RSB and petroleum diesel in diesel engines shows positive performance, both engine performance and emissions, as well as the use of mixed PPO and diesel fuel. Although RSB has a good cetane number and flash point, on the other hand, RSB also has disadvantages in its physiochemical properties, such as low oxidation stability, high acid value, low heating value, and high viscosity. Likewise, PPO has good oxidation stability, acid value, and viscosity, but the flash point, CO, and HC emissions are also bad. This article tries to describe the opportunity to mix RSB and PPO, to find the best composition between RSB and PPO which shows the best fuel physiochemical properties and engine performance.

Keywords

Rubber seed biodiesel Plastic pyrolysis oil Psychochemical properties Engine performance

Article Details

References

  1. J. Yuan and X. Luo, “Regional energy security performance evaluation in China using MTGS and SPA-TOPSIS,” Science of the Total Environment, vol. 696, p. 133817, 2019, doi: 10.1016/j.scitotenv.2019.133817.
  2. S. N. Gebremariam and J. M. Marchetti, “Economics of biodiesel production: review,” Energy Conversion and Management, vol. 168, pp. 74–84, 2018, doi: 10.1016/j.enconman.2018.05.002.
  3. T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973–1991, 2020, doi: 10.1016/j.egyr.2020.07.020.
  4. X. Zhou and C. Feng, “The impact of environmental regulation on fossil energy consumption in China: Direct and indirect effects,” Journal of Cleaner Production, vol. 142, pp. 3174–3183, 2017, doi: 10.1016/j.jclepro.2016.10.152.
  5. S. Erker, R. Stangl, and G. Stoeglehner, “Resilience in the light of energy crises–Part I: A framework to conceptualise regional energy resilience,” Journal of Cleaner Production, vol. 164, pp. 420–433, 2017, doi: 10.1016/j.jclepro.2017.06.163.
  6. S. Dharma, H. C. Ong, H. H. Masjuki, A. H. Sebayang, and A. S. Silitonga, “An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines,” Energy Conversion and Management, vol. 128, pp. 66–81, 2016, doi: 10.1016/j.enconman.2016.08.072.
  7. U. Bulut and R. Inglesi-Lotz, “Which type of energy drove industrial growth in the US from 2000 to 2018?,” Energy Reports, vol. 5, pp. 425–430, 2019, doi: 10.1016/j.egyr.2019.04.005.
  8. H. Ambarita, “Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode,” Case studies in thermal engineering, vol. 10, pp. 179–191, 2017, doi: 10.1016/j.csite.2017.06.003.
  9. P. Barua, N. Hossain, T. Chowdhury, and H. Chowdhury, “Commercial diesel application scenario and potential of alternative biodiesel from waste chicken skin in Bangladesh,” Environmental Technology & Innovation, vol. 20, p. 101139, 2020, doi: 10.1016/j.eti.2020.101139.
  10. F. Martins, C. Felgueiras, M. Smitkova, and N. Caetano, “Analysis of fossil fuel energy consumption and environmental impacts in European countries,” Energies, vol. 12, no. 6, p. 964, 2019, doi: 10.3390/en12060964.
  11. Z. Li-Xiang and Y. Chu-Xiao, “Research on the impact of the new and renewable energy replacing fossil energy resources under constraint of carbon emissions,” China Petroleum Processing & Petrochemical Technology, vol. 21, no. 4, p. 58, 2019.
  12. K. Sudalaiyandi, K. Alagar, M. P. VJ, and P. Madhu, “Performance and emission characteristics of diesel engine fueled with ternary blends of linseed and rubber seed oil biodiesel,” Fuel, vol. 285, p. 119255, 2021, doi: 10.1016/j.fuel.2020.119255.
  13. H. Ambarita and H. Kawai, “Utilization of Renewable and Conventional Energy in Palm Oil Industry in Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 753, no. 1, p. 12002, doi: 10.1088/1755-1315/753/1/012002.
  14. M. Elkelawy et al., “Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with diesel/biodiesel blends,” Fuel, vol. 255, p. 115791, 2019, doi: 10.1016/j.fuel.2019.115791.
  15. A. S. Silitonga et al., “Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization,” Renewable Energy, vol. 146, pp. 1278–1291, 2020, doi: 10.1016/j.renene.2019.07.065.
  16. B. Dharmalingam, S. Ramalingam, A. Santhoshkumar, M. P. Gundupalli, and M. Sriariyanun, “A review on different additives and advanced injection strategy on diesel engine characteristics fuelled with first, second and third generation biodiesel,” Materials Today: Proceedings, vol. 72, pp. 2909–2914, 2023, doi: 10.1016/j.matpr.2022.07.439.
  17. S. R. Chia, S. Nomanbhay, M. Y. Ong, K. W. Chew, and P. L. Show, “Renewable diesel as fossil fuel substitution in Malaysia: A review,” Fuel, vol. 314, p. 123137, 2022, doi: 10.1016/j.fuel.2022.123137.
  18. R. E. Nugraha et al., “Lewis acid Ni/Al-MCM-41 catalysts for H 2-free deoxygenation of Reutealis trisperma oil to biofuels,” RSC advances, vol. 11, no. 36, pp. 21885–21896, 2021, doi: 10.1039/D1RA03145G.
  19. G. A. Miraculas, N. Bose, and R. E. Raj, “Process parameter optimization for biodiesel production from mixed feedstock using empirical model,” Sustainable Energy Technologies and Assessments, vol. 28, pp. 54–59, 2018, doi: 10.1016/j.seta.2018.06.004.
  20. F. Yaşar, “Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type,” Fuel, vol. 264, p. 116817, 2020, doi: 10.1016/j.fuel.2019.116817.
  21. W. Wenchao, L. Fashe, and L. Ying, “Effect of biodiesel ester structure optimization on low temperature performance and oxidation stability,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 2727–2736, 2020, doi: 10.1016/j.jmrt.2020.01.005.
  22. Z. Ni, F. Li, H. Wang, S. Wang, S. Gao, and L. Zhou, “Antioxidative performance and oil-soluble properties of conventional antioxidants in rubber seed oil biodiesel,” Renewable Energy, vol. 145, pp. 93–98, 2020, doi: 10.1016/j.renene.2019.04.045.
  23. S. Brahma et al., “Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production,” Chemical Engineering Journal Advances, vol. 10, p. 100284, 2022, doi: 10.1016/j.ceja.2022.100284.
  24. V. S. Sikarwar, M. Hrabovský, G. Van Oost, M. Pohořelý, and M. Jeremiáš, “Progress in waste utilization via thermal plasma,” Progress in Energy and Combustion Science, vol. 81, p. 100873, 2020, doi: 10.1016/j.pecs.2020.100873.
  25. N. Evode, S. A. Qamar, M. Bilal, D. Barceló, and H. M. N. Iqbal, “Plastic waste and its management strategies for environmental sustainability,” Case Studies in Chemical and Environmental Engineering, vol. 4, p. 100142, 2021, doi: 10.1016/j.cscee.2021.100142.
  26. S. K. Mallick, M. Pramanik, B. Maity, P. Das, and M. Sahana, “Plastic waste footprint in the context of COVID-19: reduction challenges and policy recommendations towards sustainable development goals,” Science of the Total Environment, vol. 796, p. 148951, 2021, doi: 10.1016/j.scitotenv.2021.148951.
  27. B. Sharma, S. Shekhar, S. Sharma, and P. Jain, “The paradigm in conversion of plastic waste into value added materials,” Cleaner Engineering and Technology, vol. 4, p. 100254, 2021, doi: 10.1016/j.clet.2021.100254.
  28. M.-Y. Lee, N.-H. Cho, S.-J. Lee, N. Um, T.-W. Jeon, and Y.-Y. Kang, “Application of material flow analysis for plastic waste management in the Republic of Korea,” Journal of Environmental Management, vol. 299, p. 113625, 2021, doi: 10.1016/j.jenvman.2021.113625.
  29. T. Liu et al., “Comparative study of mechanical properties between irradiated and regular plastic waste as a replacement of cement and fine aggregate for manufacturing of green concrete,” Ain Shams Engineering Journal, vol. 13, no. 2, p. 101563, 2022, doi: 10.1016/j.asej.2021.08.006.
  30. S. Amena, “Experimental study on the effect of plastic waste strips and waste brick powder on strength parameters of expansive soils,” Heliyon, vol. 7, no. 11, 2021, doi: 10.1016/j.heliyon.2021.e08278.
  31. X. Xu, Y. Hou, C. Zhao, L. Shi, and Y. Gong, “Research on cooperation mechanism of marine plastic waste management based on complex network evolutionary game,” Marine Policy, vol. 134, p. 104774, 2021, doi: 10.1016/j.marpol.2021.104774.
  32. J. Huang, A. Veksha, W. P. Chan, A. Giannis, and G. Lisak, “Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes,” Renewable and Sustainable Energy Reviews, vol. 154, p. 111866, 2022, doi: 10.1016/j.rser.2021.111866.
  33. N. Sakthipriya, “Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis,” Science of The Total Environment, vol. 809, p. 151160, 2022, doi: 10.1016/j.scitotenv.2021.151160.
  34. J. Thamilarasan, S. Kolappan, R. Pushpakumar, and A. Sharma, “Investigation of plastic Pyrolysis oil performance on CI engine blended with magnesium oxide nanoparticle using Taguchi method,” Materials Today: Proceedings, vol. 47, pp. 2796–2800, 2021, doi: 10.1016/j.matpr.2021.03.401.
  35. L. Li, J. Zuo, X. Duan, S. Wang, K. Hu, and R. Chang, “Impacts and mitigation measures of plastic waste: A critical review,” Environmental Impact Assessment Review, vol. 90, p. 106642, 2021, doi: 10.1016/j.eiar.2021.106642.
  36. S. Dharmaraj, V. Ashokkumar, K. W. Chew, S. R. Chia, P. L. Show, and C. Ngamcharussrivichai, “Novel strategy in biohydrogen energy production from COVID-19 plastic waste: A critical review,” International journal of hydrogen energy, vol. 47, no. 100, pp. 42051–42074, 2022, doi: 10.1016/j.ijhydene.2021.08.236.
  37. V. Mortezaeikia, O. Tavakoli, and M. S. Khodaparasti, “A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis,” Journal of Analytical and Applied Pyrolysis, vol. 160, p. 105340, 2021, doi: 10.1016/j.jaap.2021.105340.
  38. Z. Ali, P. Rathnakumar, M. A. Hussain, E. Roma, M. Nagaral, and M. Umar, “Jet fuel produced from waste plastic with graphite as a catalyst,” Materials Today: Proceedings, vol. 52, pp. 716–723, 2022, doi: 10.1016/j.matpr.2021.10.131.
  39. A. Pacheco-Lopez, F. Lechtenberg, A. Somoza-Tornos, M. Graells, and A. Espuna, “Economic and environmental assessment of plastic waste pyrolysis products and biofuels as substitutes for fossil-based fuels,” Frontiers in Energy Research, vol. 9, p. 676233, 2021, doi: 10.3389/fenrg.2021.676233.
  40. C. Lubongo, T. Congdon, J. McWhinnie, and P. Alexandridis, “Economic feasibility of plastic waste conversion to fuel using pyrolysis,” Sustainable Chemistry and Pharmacy, vol. 27, p. 100683, 2022, doi: 10.1016/j.scp.2022.100683.
  41. R. Nayab et al., “Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials–A review,” Fuel, vol. 328, p. 125254, 2022, doi: 10.1016/j.fuel.2022.125254.
  42. O. Ogunkunle and N. A. Ahmed, “A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines,” Energy Reports, vol. 5, pp. 1560–1579, 2019, doi: 10.1016/j.egyr.2019.10.028.
  43. D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. K. Sharma, and A. Jhalani, “A review on feedstocks, production processes, and yield for different generations of biodiesel,” Fuel, vol. 262, p. 116553, 2020, doi: 10.1016/j.fuel.2019.116553.
  44. A. Bhattacharjee, M. Bhowmik, C. Paul, B. Das Chowdhury, and B. Debnath, “Rubber tree seed utilization for green energy, revenue generation and sustainable development–A comprehensive review,” Industrial Crops and Products, vol. 174, p. 114186, 2021, doi: 10.1016/j.indcrop.2021.114186.
  45. C. S. Sabarish, J. Sebastian, and C. Muraleedharan, “Extraction of oil from rubber seed through hydraulic press and kinetic study of acid esterification of rubber seed oil,” Procedia Technology, vol. 25, pp. 1006–1013, 2016, doi: 10.1016/j.protcy.2016.08.200.
  46. A. Arumugam, D. Thulasidharan, and G. B. Jegadeesan, “Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel,” Renewable Energy, vol. 116, pp. 755–761, 2018, doi: 10.1016/j.renene.2017.10.021.
  47. F. A. Azizan et al., “Using multi-temporal satellite data to analyse phenological responses of rubber (Hevea brasiliensis) to climatic variations in South Sumatra, Indonesia,” Remote Sensing, vol. 13, no. 15, p. 2932, 2021, doi: 10.3390/rs13152932.
  48. Direktorat Jenderal Perkebunan, “Luas Areal Kelapa Menurut Provinsi di Indonesia, 2016-2019,” ditjenbun.pertanian.go.id, 2021. .
  49. S. Lüneburger, A. L. Gallina, L. C. Soares, and D. M. Benvegnú, “Biodiesel production from Hevea Brasiliensis seed oil,” Fuel, vol. 324, p. 124639, 2022, doi: 10.1016/j.fuel.2022.124639.
  50. S. E. Onoji, S. E. Iyuke, A. I. Igbafe, and D. B. Nkazi, “Rubber seed oil: A potential renewable source of biodiesel for sustainable development in sub-Saharan Africa,” Energy conversion and management, vol. 110, pp. 125–134, 2016, doi: 10.1016/j.enconman.2015.12.002.
  51. H. K. G. Singh et al., “Five-lump kinetic approach on biofuel production from refined rubber seed oil over Cu/ZSM-5 catalyst via catalytic cracking reaction,” Renewable Energy, vol. 171, pp. 1445–1453, 2021, doi: 10.1016/j.renene.2021.02.085.
  52. O. D. Samuel, M. O. Okwu, S. T. Amosun, T. N. Verma, and S. A. Afolalu, “Production of fatty acid ethyl esters from rubber seed oil in hydrodynamic cavitation reactor: Study of reaction parameters and some fuel properties,” Industrial Crops and Products, vol. 141, p. 111658, 2019, doi: 10.1016/j.indcrop.2019.111658.
  53. H. K. G. Singh, S. Yusup, B. Abdullah, K. W. Cheah, F. N. Azmee, and H. L. Lam, “Refining of crude rubber seed oil as a feedstock for biofuel production,” Journal of environmental management, vol. 203, pp. 1011–1016, 2017, doi: 10.1016/j.jenvman.2017.04.021.
  54. M. Morshed, K. Ferdous, M. R. Khan, M. S. I. Mazumder, M. A. Islam, and M. T. Uddin, “Rubber seed oil as a potential source for biodiesel production in Bangladesh,” Fuel, vol. 90, no. 10, pp. 2981–2986, 2011, doi: 10.1016/j.fuel.2011.05.020.
  55. P. Boonnoun, A. Shotipruk, H. Kanda, and M. Goto, “Optimization of rubber seed oil extraction using liquefied dimethyl ether,” Chemical Engineering Communications, vol. 206, no. 6, pp. 746–753, 2019, doi: 10.1080/00986445.2018.1522502.
  56. W. Roschat, T. Siritanon, B. Yoosuk, T. Sudyoadsuk, and V. Promarak, “Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand,” Renewable Energy, vol. 101, pp. 937–944, 2017, doi: 10.1016/j.renene.2016.09.057Alkyd resin from rubber seed oil/linseed oil blend: A comparative study of the physiochemical propertie.
  57. G. O. Otabor, I. H. Ifijen, F. U. Mohammed, A. I. Aigbodion, and E. U. Ikhuoria, “Alkyd resin from rubber seed oil/linseed oil blend: A comparative study of the physiochemical properties,” Heliyon, vol. 5, no. 5, 2019, doi: 10.1016/j.heliyon.2019.e01621.
  58. M. Ameen, M. T. Azizan, A. Ramli, S. Yusup, and M. S. Alnarabiji, “Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al2O3 catalyst for green diesel production,” Ultrasonics sonochemistry, vol. 51, pp. 90–102, 2019, doi: 10.1016/j.ultsonch.2018.10.011.
  59. A. K. Paul, V. B. Borugadda, A. S. Reshad, M. S. Bhalerao, P. Tiwari, and V. V Goud, “Comparative study of physicochemical and rheological property of waste cooking oil, castor oil, rubber seed oil, their methyl esters and blends with mineral diesel fuel,” Materials Science for Energy Technologies, vol. 4, pp. 148–155, 2021, doi: 10.1016/j.mset.2021.03.004.
  60. S. M. Saeed et al., “Optimization of rubber seed oil content as bio-oil rejuvenator and total water content for cold recycled asphalt mixtures using response surface methodology,” Case Studies in Construction Materials, vol. 15, p. e00561, 2021, doi: 10.1016/j.cscm.2021.e00561.
  61. H. Kaur, P. G. Singh, S. Yusup, and C. K. Wai, “Physicochemical properties of crude rubber seed oil for biogasoline production,” Procedia engineering, vol. 148, pp. 426–431, 2016, doi: 10.1016/j.proeng.2016.06.441.
  62. C. F. Jisieike and E. Betiku, “Rubber seed oil extraction: effects of solvent polarity, extraction time and solid-solvent ratio on its yield and quality,” Biocatalysis and Agricultural Biotechnology, vol. 24, p. 101522, 2020, doi: 10.1016/j.bcab.2020.101522.
  63. J. Gimbun et al., “Biodiesel production from rubber seed oil using activated cement clinker as catalyst,” Procedia Engineering, vol. 53, pp. 13–19, 2013, doi: 10.1016/j.proeng.2013.02.003.
  64. R. Yang et al., “Biodiesel production from rubber seed oil using poly (sodium acrylate) supporting NaOH as a water-resistant catalyst,” Bioresource technology, vol. 102, no. 3, pp. 2665–2671, 2011, doi: 10.1016/j.biortech.2010.10.131.
  65. S. N. M. Khazaai, G. P. Maniam, M. H. A. Rahim, M. M. Yusoff, and Y. Matsumura, “Review on methyl ester production from inedible rubber seed oil under various catalysts,” Industrial Crops and Products, vol. 97, pp. 191–195, 2017, doi: 10.1016/j.indcrop.2016.11.052.
  66. A. S. Ramadhas, S. Jayaraj, and C. Muraleedharan, “Biodiesel production from high FFA rubber seed oil,” Fuel, vol. 84, no. 4, pp. 335–340, 2005, doi: 10.1016/j.fuel.2004.09.016.
  67. S. H. Dhawane, A. P. Bora, T. Kumar, and G. Halder, “Parametric optimization of biodiesel synthesis from rubber seed oil using iron doped carbon catalyst by Taguchi approach,” Renewable energy, vol. 105, pp. 616–624, 2017, doi: 10.1016/j.renene.2016.12.096.
  68. M. Chhabra, G. Dwivedi, P. Baredar, A. K. Shukla, A. Garg, and S. Jain, “Production & optimization of biodiesel from rubber oil using BBD technique,” Materials Today: Proceedings, vol. 38, pp. 69–73, 2021, doi: 10.1016/j.matpr.2020.05.791.
  69. S. H. Dhawane, T. Kumar, and G. Halder, “Process optimisation and parametric effects on synthesis of lipase immobilised carbonaceous catalyst for conversion of rubber seed oil to biodiesel,” Energy Conversion and Management, vol. 176, pp. 55–68, 2018, doi: 10.1016/j.enconman.2018.09.019.
  70. B. Sugebo, Z. Demrew, S. Feleke, and M. Biazen, “Evaluation and characterization of rubber seed oil for biodiesel production,” Biomass Conversion and Biorefinery, pp. 1–11, 2021, doi: 10.1007/s13399-021-01900-4.
  71. S. Kumar, K. Yadav, and G. Dwivedi, “Impact analysis of oxidation stability for biodiesel & its blends,” Materials Today: Proceedings, vol. 5, no. 9, pp. 19255–19261, 2018, doi: 10.1016/j.matpr.2018.06.283.
  72. A. A. Alsaedi et al., “Extraction and separation of lipids from municipal sewage sludge for biodiesel production: kinetics and thermodynamics modeling,” Fuel, vol. 325, p. 124946, 2022, doi: 10.1016/j.fuel.2022.124946.
  73. C. F. Uzoh, A. Nnuekwe, O. Onukwuli, S. Ofochebe, and C. Ezekannagha, “Optimal route for effective conversion of rubber seed oil to biodiesel with desired key fuel properties,” Journal of Cleaner Production, vol. 280, p. 124563, 2021, doi: 10.1016/j.jclepro.2020.124563.
  74. F. A. Aisien and E. T. Aisien, “Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology,” Renewable Energy, vol. 207, pp. 137–146, 2023, doi: 10.1016/j.renene.2023.02.093.
  75. S. E. Onoji, S. E. Iyuke, A. I. Igbafe, and M. O. Daramola, “Rubber seed (Hevea brasiliensis) oil biodiesel emission profiles and engine performance characteristics using a TD202 diesel test engine,” Biofuels, vol. 13, no. 4, pp. 423–430, 2022, doi: 10.1080/17597269.2020.1738679.
  76. D. Vishal, S. Dubey, R. Goyal, G. Dwivedi, P. Baredar, and M. Chhabra, “Optimization of alkali-catalyzed transesterification of rubber oil for biodiesel production & its impact on engine performance,” Renewable Energy, vol. 158, pp. 167–180, 2020, doi: 10.1016/j.renene.2020.05.136.
  77. I. Kalargaris, G. Tian, and S. Gu, “Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil,” Fuel Processing Technology, vol. 157, pp. 108–115, 2017, doi: 10.1016/j.fuproc.2016.11.016.
  78. V. E. Geo, A. Sonthalia, G. Nagarajan, and B. Nagalingam, “Studies on performance, combustion and emission of a single cylinder diesel engine fuelled with rubber seed oil and its biodiesel along with ethanol as injected fuel,” Fuel, vol. 209, pp. 733–741, 2017, doi: 10.1016/j.fuel.2017.08.036.
  79. V. E. Geo, G. Nagarajan, B. Nagalingam, F. Aloui, and M. Tazerout, “A comparative analysis of different methods to improve the performance of rubber seed oil fuelled compression ignition engine,” Fuel, vol. 280, p. 118644, 2020, doi: 10.1016/j.fuel.2020.118644.
  80. S. B. AVSL, N. Subramaniapillai, M. S. B. K. Mohamed, and A. Narayanan, “Effect of rubber seed oil biodiesel on engine performance and emission analysis,” Fuel, vol. 296, p. 120708, 2021, doi: 10.1016/j.fuel.2021.120708.
  81. K. V. Krishna, G. R. K. Sastry, M. V. S. M. Krishna, and J. D. Barma, “Investigation on performance and emission characteristics of EGR coupled semi adiabatic diesel engine fuelled by DEE blended rubber seed biodiesel,” Engineering science and technology, an international journal, vol. 21, no. 1, pp. 122–129, 2018, doi: 10.1016/j.jestch.2018.02.010.
  82. S. Murugapoopathi and D. Vasudevan, “Performance, combustion and emission characteristics on VCR multi-fuel engine running on methyl esters of rubber seed oil,” Journal of Thermal Analysis and Calorimetry, vol. 138, pp. 1329–1343, 2019, doi: 10.1007/s10973-019-08281-x.
  83. E. G. Varuvel, T. Subramanian, and P. Khatri, “Effect of diglyme addition on performance and emission characteristics of hybrid minor vegetable oil blends (rubber seed and babassu oil) in a tractor engine–an experimental study,” Biofuels, vol. 11, no. 7, pp. 829–837, 2018, doi: 10.1080/17597269.2017.1418568.
  84. V. L. Mangesh, S. Padmanabhan, P. Tamizhdurai, and A. Ramesh, “Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel,” Journal of Cleaner Production, vol. 246, p. 119066, 2020, doi: 10.1016/j.jclepro.2019.119066.
  85. T. Maqsood, J. Dai, Y. Zhang, M. Guang, and B. Li, “Pyrolysis of plastic species: A review of resources and products,” Journal of Analytical and Applied Pyrolysis, vol. 159, p. 105295, 2021, doi: 10.1016/j.jaap.2021.105295.
  86. R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, and A. S. Nizami, “Effect of plastic waste types on pyrolysis liquid oil,” International Biodeterioration and Biodegradation, vol. 119, pp. 239–252, 2017, doi: 10.1016/j.ibiod.2016.09.017.
  87. K. Sundar and R. Udayakumar, “Comparative evaluation of the performance of rice bran and cotton seed biodiesel blends in VCR diesel engine,” Energy Reports, vol. 6, pp. 795–801, 2020, doi: 10.1016/j.egyr.2019.12.005.
  88. M. Bhargavi, T. V. Kumar, R. A. A. Shaik, S. K. Kanna, and S. Padmanabhan, “Effective utilization and optimization of waste plastic oil with ethanol additive in diesel engine using full factorial design,” Materials Today: Proceedings, vol. 52, pp. 930–936, 2022, doi: 10.1016/j.matpr.2021.10.310.
  89. K. K. Jha and T. T. M. Kannan, “Recycling of plastic waste into fuel by pyrolysis-a review,” Materials Today: Proceedings, vol. 37, pp. 3718–3720, 2021, doi: 10.1016/j.matpr.2020.10.181.
  90. K. Janarthanan and P. Sivanandi, “Extraction and characterization of waste plastic pyrolysis oil for diesel engines,” Journal of Cleaner Production, vol. 366, p. 132924, 2022, doi: 10.1016/j.jclepro.2022.132924.
  91. F. Abnisa and P. A. Alaba, “Recovery of liquid fuel from fossil-based solid wastes via pyrolysis technique: A review,” Journal of Environmental Chemical Engineering, vol. 9, no. 6, p. 106593, 2021, doi: 10.1016/j.jece.2021.106593.
  92. M. S. Qureshi et al., “Pyrolysis of plastic waste: Opportunities and challenges,” Journal of Analytical and Applied Pyrolysis, vol. 152, p. 104804, 2020, doi: 10.1016/j.jaap.2020.104804.
  93. S. K. Tulashie, E. K. Boadu, and S. Dapaah, “Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana,” Thermal Science and Engineering Progress, vol. 11, pp. 417–424, 2019, doi: 10.1016/j.tsep.2019.05.002.
  94. S. Wiriyaumpaiwong and J. Jamradloedluk, “Distillation of pyrolytic oil obtained from fast pyrolysis of plastic wastes,” Energy Procedia, vol. 138, pp. 111–115, 2017, doi: 10.1016/j.egypro.2017.10.071.
  95. N. Miskolczi, N. Borsodi, F. Buyong, A. Angyal, and P. T. Williams, “Production of pyrolytic oils by catalytic pyrolysis of Malaysian refuse-derived fuels in continuously stirred batch reactor,” Fuel Processing Technology, vol. 92, no. 5, pp. 925–932, 2011, doi: 10.1016/j.fuproc.2010.12.012.
  96. C. Vasile, H. Pakdel, B. Mihai, P. Onu, H. Darie, and S. Ciocâlteu, “Thermal and catalytic decomposition of mixed plastics,” Journal of analytical and Applied Pyrolysis, vol. 57, no. 2, pp. 287–303, 2001, doi: 10.1016/S0165-2370(00)00151-0.
  97. P. Onu, C. Vasile, S. Ciocılteu, E. Iojoiu, and H. Darie, “Thermal and catalytic decomposition of polyethylene and polypropylene,” Journal of Analytical and Applied pyrolysis, vol. 49, no. 1–2, pp. 145–153, 1999, doi: 10.1016/S0165-2370(98)00109-0.
  98. D. Zhao, X. Wang, J. B. Miller, and G. W. Huber, “The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals,” ChemSusChem, vol. 13, no. 7, pp. 1764–1774, 2020, doi: 10.1002/cssc.201903434.
  99. N. Zhou et al., “Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production,” Chemical Engineering Journal, vol. 418, p. 129412, 2021, doi: 10.1016/j.cej.2021.129412.
  100. I. Kalargaris, G. Tian, and S. Gu, “Experimental characterisation of a diesel engine running on polypropylene oils produced at different pyrolysis temperatures,” Fuel, vol. 211, pp. 797–803, 2018, doi: 10.1016/j.fuel.2017.09.101.
  101. I. Kalargaris, G. Tian, and S. Gu, “Experimental evaluation of a diesel engine fuelled by pyrolysis oils produced from low-density polyethylene and ethylene–vinyl acetate plastics,” Fuel Processing Technology, vol. 161, pp. 125–131, 2017, doi: 10.1016/j.fuproc.2017.03.014.
  102. H. Venkatesan, S. Sivamani, K. Bhutoria, and H. H. Vora, “Experimental study on combustion and performance characteristics in a DI CI engine fuelled with blends of waste plastic oil,” Alexandria Engineering Journal, vol. 57, no. 4, pp. 2257–2263, 2018, doi: 10.1016/j.aej.2017.09.001.
  103. M. I. Jahirul, M. G. Rasul, D. Schaller, M. M. K. Khan, M. M. Hasan, and M. A. Hazrat, “Transport fuel from waste plastics pyrolysis–A review on technologies, challenges and opportunities,” Energy Conversion and Management, vol. 258, p. 115451, 2022, doi: 10.1016/j.enconman.2022.115451.
  104. V. K. Kareddula and R. K. Puli, “Influence of plastic oil with ethanol gasoline blending on multi cylinder spark ignition engine,” Alexandria engineering journal, vol. 57, no. 4, pp. 2585–2589, 2018, doi: 10.1016/j.aej.2017.07.015.
  105. I. Kalargaris, G. Tian, and S. Gu, “Investigation on the long-term effects of plastic pyrolysis oil usage in a diesel engine,” Energy Procedia, vol. 142, pp. 49–54, 2017, doi: 10.1016/j.egypro.2017.12.009.
  106. P. Bridjesh, P. Periyasamy, and N. K. Geetha, “RETRACTED: Combined effect of composite additive and combustion chamber modification to adapt waste plastic oil as fuel on a diesel engine,” Journal of the Taiwan Institute of Chemical Engineers, vol. 97, pp. 297–304, 2019, doi: 10.1016/j.jtice.2019.02.022.
  107. M. Mariappan, M. S. Panithasan, and G. Venkadesan, “Pyrolysis plastic oil production and optimisation followed by maximum possible replacement of diesel with bio-oil/methanol blends in a CRDI engine,” Journal of Cleaner Production, vol. 312, p. 127687, 2021, doi: 10.1016/j.jclepro.2021.127687.
  108. B. A. Oni, S. E. Sanni, and O. S. Olabode, “Production of fuel-blends from waste tyre and plastic by catalytic and integrated pyrolysis for use in compression ignition (CI) engines,” Fuel, vol. 297, p. 120801, 2021, doi: 10.1016/j.fuel.2021.120801.
  109. Ü. Ağbulut, M. K. Yeşilyurt, and S. Sarıdemir, “Wastes to energy: Improving the poor properties of waste tire pyrolysis oil with waste cooking oil methyl ester and waste fusel alcohol–A detailed assessment on the combustion, emission, and performance characteristics of a CI engine,” Energy, vol. 222, p. 119942, 2021, doi: 10.1016/j.energy.2021.119942.
  110. V. L. Mangesh, S. Padmanabhan, P. Tamizhdurai, S. Narayanan, and A. Ramesh, “Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel,” Journal of hazardous materials, vol. 386, p. 121453, 2020, doi: 10.1016/j.jhazmat.2019.121453.
  111. T. S. Singh, T. N. Verma, and H. N. Singh, “A lab scale waste to energy conversion study for pyrolysis of plastic with and without catalyst: Engine emissions testing study,” Fuel, vol. 277, p. 118176, 2020, doi: 10.1016/j.fuel.2020.118176.
  112. J. Devaraj, Y. Robinson, and P. Ganapathi, “Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine,” Energy, vol. 85, pp. 304–309, 2015, doi: 10.1016/j.energy.2015.03.075.
  113. A. K. Das, D. Hansdah, A. K. Mohapatra, and A. K. Panda, “Energy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blend,” Journal of the Energy Institute, vol. 93, no. 4, pp. 1624–1633, 2020, doi: 10.1016/j.joei.2020.01.024.
  114. E. Hürdoğan, C. Ozalp, O. Kara, and M. Ozcanli, “Experimental investigation on performance and emission characteristics of waste tire pyrolysis oil–diesel blends in a diesel engine,” International Journal of Hydrogen Energy, vol. 42, no. 36, pp. 23373–23378, 2017, doi: 10.1016/j.ijhydene.2016.12.126.
  115. B. Rajesh and K. Rajesh, “Experimental investigation on single cylinder four stroke tri-charged diesel engine using pyrolysis oil at different proportions,” Materials Today: Proceedings, vol. 52, pp. 675–682, 2022, doi: 10.1016/j.matpr.2021.10.078.
  116. S. L. Kumar, S. Radjarejesri, and R. R. Jawahar, “Characterization of waste plastic oil as biodiesel in IC engines,” Materials Today: Proceedings, vol. 33, pp. 833–838, 2020, doi: 10.1016/j.matpr.2020.06.272.
  117. J. Song, K. Sun, and Q. Huang, “The effect of thermal aging on the composition of pyrolysis oil fuel derived from typical waste plastics,” Fuel Processing Technology, vol. 218, p. 106862, 2021, doi: 10.1016/j.fuproc.2021.106862.
  118. P. Bridjesh, P. Periyasamy, A. V. K. Chaitanya, and N. K. Geetha, “MEA and DEE as additives on diesel engine using waste plastic oil diesel blends,” Sustainable environment research, vol. 28, no. 3, pp. 142–147, 2018, doi: 10.1016/j.serj.2018.01.001.
  119. D. Damodharan, A. P. Sathiyagnanam, D. Rana, B. R. Kumar, and S. Saravanan, “Extraction and characterization of waste plastic oil (WPO) with the effect of n-butanol addition on the performance and emissions of a DI diesel engine fueled with WPO/diesel blends,” Energy conversion and management, vol. 131, pp. 117–126, 2017, doi: 10.1016/j.enconman.2016.10.076.
  120. A. S. Ayodhya, V. T. Lamani, P. Bedar, and G. N. Kumar, “Effect of exhaust gas recirculation on a CRDI engine fueled with waste plastic oil blend,” Fuel, vol. 227, pp. 394–400, 2018, doi: 10.1016/j.fuel.2018.04.128.
  121. V. Chintala, A. K. Sharma, P. Ghodke, S. Kumar, and P. Kumar, “Effect of injection timing on performance and emission characteristics of single cylinder diesel engine running on blends of diesel and waste plastic fuels,” Materials Today: Proceedings, vol. 17, pp. 209–215, 2019, doi: 10.1016/j.matpr.2019.06.420.
  122. I. Kalargaris, G. Tian, and S. Gu, “The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine,” Energy, vol. 131, pp. 179–185, 2017, doi: 10.1016/j.energy.2017.05.024.
  123. K. K. Jha and T. T. M. Kannan, “Alternate fuel preparation in low cost from waste plastic: A review,” Materials Today: Proceedings, vol. 37, pp. 3656–3657, 2021, doi: 10.1016/j.matpr.2020.09.802.
  124. R. Miandad, M. A. Barakat, M. Rehan, A. S. Aburiazaiza, I. M. I. Ismail, and A. S. Nizami, “Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts,” Waste Management, vol. 69, pp. 66–78, 2017, doi: 10.1016/j.wasman.2017.08.032.
  125. K. Sivagami, K. V Kumar, P. Tamizhdurai, D. Govindarajan, M. Kumar, and I. Nambi, “Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor,” RSC advances, vol. 12, no. 13, pp. 7612–7620, 2022, doi: 10.1039/D1RA08673A.
  126. R. Miranda, J. Yang, C. Roy, and C. Vasile, “Vacuum pyrolysis of PVC I. Kinetic study,” Polymer degradation and stability, vol. 64, no. 1, pp. 127–144, 1999, doi: 10.1016/S0141-3910(98)00186-4.
  127. R. Bagri and P. T. Williams, “Catalytic pyrolysis of polyethylene,” Journal of analytical and applied pyrolysis, vol. 63, no. 1, pp. 29–41, 2002, doi: 10.1016/S0165-2370(01)00139-5.
  128. D. Hariadi, S. M. Saleh, R. A. Yamin, and S. Aprilia, “Utilization of LDPE plastic waste on the quality of pyrolysis oil as an asphalt solvent alternative,” Thermal Science and Engineering Progress, vol. 23, p. 100872, 2021, doi: 10.1016/j.tsep.2021.100872.
  129. T. Mondal, “Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil,” Journal of Environmental Management, vol. 344, p. 118680, 2023, doi: 10.1016/j.jenvman.2023.118680.
  130. I. Ahmad et al., “Pyrolysis study of polypropylene and polyethylene into premium oil products,” International journal of green energy, vol. 12, no. 7, pp. 663–671, 2015, doi: 10.1080/15435075.2014.880146.
  131. T. Ademiluyi and C. Akpan, “Preliminary evaluation of fuel oil produced from pyrolysis of low density polyethylene water-sachet wastes,” Journal of Applied Sciences and Environmental Management, vol. 11, no. 3, 2007, doi: 10.4314/jasem.v11i3.55069.
  132. İ. Çit, A. Sınağ, T. Yumak, S. Uçar, Z. Mısırlıoğlu, and M. Canel, “Comparative pyrolysis of polyolefins (PP and LDPE) and PET,” Polymer bulletin, vol. 64, pp. 817–834, 2010, doi: 10.1007/s00289-009-0225-x.
  133. Maryudi, S. Salamah, and A. Aktawan, “Product distribution of pyrolysis of polystyrene foam waste using catalyst of natural zeolite and nickel/silica,” in IOP Conference Series: Earth and Environmental Science, 2018, vol. 175, p. 12012, doi: 10.1088/1755-1315/175/1/012012.
  134. M. del Remedio Hernández, Á. N. García, and A. Marcilla, “Catalytic flash pyrolysis of HDPE in a fluidized bed reactor for recovery of fuel-like hydrocarbons,” Journal of analytical and applied pyrolysis, vol. 78, no. 2, pp. 272–281, 2007, doi: 10.1016/j.jaap.2006.03.009.
  135. F. J. Mastral, E. Esperanza, C. Berrueco, M. Juste, and J. Ceamanos, “Fluidized bed thermal degradation products of HDPE in an inert atmosphere and in air–nitrogen mixtures,” Journal of Analytical and Applied Pyrolysis, vol. 70, no. 1, pp. 1–17, 2003, doi: 10.1016/S0165-2370(02)00068-2.
  136. B. J. Milne, L. A. Behie, and F. Berruti, “Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor,” Journal of Analytical and Applied Pyrolysis, vol. 51, no. 1–2, pp. 157–166, 1999, doi: 10.1016/S0165-2370(99)00014-5.
  137. A. Chaala, H. Darmstadt, and C. Roy, “Vacuum pyrolysis of electric cable wastes,” Journal of analytical and applied pyrolysis, vol. 39, no. 1, pp. 79–96, 1997, doi: 10.1016/S0165-2370(96)00964-3.
  138. F. Pinto, P. Costa, I. Gulyurtlu, and I. Cabrita, “Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield,” Journal of Analytical and Applied Pyrolysis, vol. 51, no. 1–2, pp. 39–55, 1999, doi: 10.1016/S0165-2370(99)00007-8.
  139. M. Artetxe, G. Lopez, G. Elordi, M. Amutio, J. Bilbao, and M. Olazar, “Production of light olefins from polyethylene in a two-step process: pyrolysis in a conical spouted bed and downstream high-temperature thermal cracking,” Industrial & engineering chemistry research, vol. 51, no. 43, pp. 13915–13923, 2012, doi: 10.1021/ie300178e.
  140. J. Mertinkat, A. Kirsten, M. Predel, and W. Kaminsky, “Cracking catalysts used as fluidized bed material in the Hamburg pyrolysis process,” Journal of Analytical and Applied pyrolysis, vol. 49, no. 1–2, pp. 87–95, 1999, doi: 10.1016/S0165-2370(98)00103-X.
  141. S. A. H. S. Mousavi, S. M. Sadrameli, and A. H. S. Dehaghani, “Catalytic pyrolysis of municipal plastic waste over nano MIL-53 (Cu) derived@ zeolite Y for gasoline, jet fuel, and diesel range fuel production,” Process Safety and Environmental Protection, vol. 164, pp. 449–467, 2022, doi: 10.1016/j.psep.2022.06.018.
  142. S. Liu, P. A. Kots, B. C. Vance, A. Danielson, and D. G. Vlachos, “Plastic waste to fuels by hydrocracking at mild conditions,” Science Advances, vol. 7, no. 17, p. eabf8283, 2021, doi: 10.1126/sciadv.abf8283.
  143. M. Sekar, V. K. Ponnusamy, A. Pugazhendhi, S. Nižetić, and T. R. Praveenkumar, “Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design,” Journal of environmental management, vol. 302, p. 114046, 2022, doi: 10.1016/j.jenvman.2021.114046.
  144. R. K. Singh, B. Ruj, A. K. Sadhukhan, P. Gupta, and V. P. Tigga, “Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics,” Fuel, vol. 262, p. 116539, 2020, doi: 10.1016/j.fuel.2019.116539.
  145. L. Quesada, M. Calero, M. A. Martín-Lara, A. Perez, and G. Blazquez, “Production of an alternative fuel by pyrolysis of plastic wastes mixtures,” Energy & Fuels, vol. 34, no. 2, pp. 1781–1790, 2020, doi: 10.1088/1757-899X/1279/1/012008.
  146. A. K. Das, T. Mohapatra, A. K. Panda, and S. S. Sahoo, “Study on the performance and emission characteristics of pyrolytic waste plastic oil operated CI engine using response surface methodology,” Journal of Cleaner Production, vol. 328, p. 129646, 2021, doi: 10.1016/j.jclepro.2021.129646.
  147. V. K. Kaimal and P. Vijayabalan, “An investigation on the effects of using DEE additive in a DI diesel engine fuelled with waste plastic oil,” Fuel, vol. 180, pp. 90–96, 2016, doi: 10.1016/j.fuel.2016.04.030.
  148. V. K. Kaimal and P. Vijayabalan, “A study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines,” Waste management, vol. 51, pp. 91–96, 2016, doi: 10.1016/j.wasman.2016.03.003.
  149. V. E. Geo, A. Sonthalia, F. Aloui, and J. S. Femilda Josephin, “Study of engine performance, emission and combustion characteristics fueled with diesel-like fuel produced from waste engine oil and waste plastics,” Frontiers of Environmental Science & Engineering, vol. 12, pp. 1–9, 2018, doi: 10.1007/s11783-018-1063-6.
  150. W. Khatha, S. Ekarong, M. Somkiat, and S. Jiraphon, “Fuel properties, performance and emission of alternative fuel from pyrolysis of waste plastics,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 717, no. 1, p. 12001, doi: 10.1088/1757-899X/717/1/012001.
  151. V. K. Kaimal and P. Vijayabalan, “A detailed investigation of the combustion characteristics of a DI diesel engine fuelled with plastic oil and rice bran methyl ester,” Journal of the energy institute, vol. 90, no. 2, pp. 324–330, 2017, doi: 10.1016/j.joei.2015.11.005.
  152. M. Sekar, T. R. Praveenkumar, V. Dhinakaran, P. Gunasekar, and A. Pugazhendhi, “Combustion and emission characteristics of diesel engine fueled with nanocatalyst and pyrolysis oil produced from the solid plastic waste using screw reactor,” Journal of Cleaner Production, vol. 318, p. 128551, 2021, doi: 10.1016/j.jclepro.2021.128551.
  153. T. S. Singh, U. Rajak, A. Dasore, M. Muthukumar, and T. N. Verma, “Performance and ecological parameters of a diesel engine fueled with diesel and plastic pyrolyzed oil (PPO) at variable working parameters,” Environmental Technology & Innovation, vol. 22, p. 101491, 2021, doi: 10.1016/j.eti.2021.101491.
  154. U. Rajak et al., “Experimental investigation of performance, combustion and emission characteristics of a variable compression ratio engine using low-density plastic pyrolyzed oil and diesel fuel blends,” Fuel, vol. 319, p. 123720, 2022, doi: 10.1016/j.fuel.2022.123720.
  155. J. Ahmad, S. Yusup, A. Bokhari, and R. N. M. Kamil, “Study of fuel properties of rubber seed oil based biodiesel,” Energy Conversion and Management, vol. 78, pp. 266–275, 2014, doi: 10.1016/j.enconman.2013.10.056.
  156. P. Senthilkumar and G. Sankaranarayanan, “Effect of Jatropha methyl ester on waste plastic oil fueled DI diesel engine,” Journal of the Energy Institute, vol. 89, no. 4, pp. 504–512, 2016, doi: 10.1016/j.joei.2015.07.006.
  157. A. Gala, D. Catalán-Martínez, M. Guerrero, and J. M. Serra, “Simulation-assisted design of a catalytic hydrogenation reactor for plastic pyrolysis fuels,” Fuel, vol. 287, p. 119400, 2021, doi: 10.1016/j.fuel.2020.119400.
  158. M. Chandran, S. Tamilkolundu, and C. Murugesan, “Characterization studies: waste plastic oil and its blends,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 42, no. 3, pp. 281–291, 2020, doi: 10.1080/15567036.2019.1587074.

Most read articles by the same author(s)